ID PW
 
* Join the Member of ICROS 
* Need your ID or Password?
 
 
 
Subject Keyword Abstract Author
 
 
Improvement of Tracking Control of a Sliding Mode Controller for Robot Manipulators by a Neural Network

Seul Jung
International Journal of Control, Automation, and Systems, vol. 16, no. 2, pp.937-943, 2018

Abstract : "This article presents a neural network control technique to improve the tracking performance of a robot manipulator controlled by the sliding mode control method in a non-model-based framework. The sliding mode controller is a typical nonlinear controller that has been well developed in theory and used in many applications due to its simplicity and practicality. Selection of the gain of the nonlinear function plays an important role in performance as well as stability. When the sliding mode controller is used for the non model-based configuration in robot control, the nonlinear gain should be selected large enough to guarantee the stability. Since the appropriate selection of the gain value is essential and difficult in the sliding mode control framework, a neural network compensator is introduced at the trajectory level to help the fixed gain deal with the stability and performance more intelligently. Stability of the proposed control scheme is analyzed. Simulation studies of following the Cartesian trajectory for a three-link rotary robot manipulator are conducted to confirm the control improvement by the neural network."

Keyword : Neural network, reference compensation technique, robot manipulators, sliding mode control.

 
Copyright ⓒ ICROS. All rights reserved.
Institute of Control, Robotics and Systems, Suseo Hyundai-Ventureville 723, Bamgogae-ro 1-gil 10, Gangnam-gu, Seoul 06349, Korea
Homepage http://eng.icros.org | Tel. +82-2-6949-5801 (ext. 3) | Fax. +82-2-6949-5807 | E-mail icros@icros.org