* Join the Member of ICROS 
* Need your ID or Password?
Subject Keyword Abstract Author
View-point Invariant 3D Classification for Mobile Robots Using a Convolutional Neural Network

Jiyoun Moon*, Hanjun Kim, and Beomhee Lee
International Journal of Control, Automation, and Systems, vol. 16, no. 6, pp.2888-2895, 2018

Abstract : "3D object classification is an important component in semantic scene understanding for mobile robots. However, many current systems do not consider the practical issues such as object representation from different viewing positions of mobile robots. A novel 3D object representation is introduced using cylindrical occupancy grid and 3D convolutional neural network with row-wise max pooling layer. Due to the rotationally invariant characteristics of this method, robots can successfully classify 3D objects regardless of starting positions of object modelling. Experimental results on publicly available benchmark dataset show the significantly improved performance compared with other conventional algorithms."

Keyword : 3D object classification, cylindrical CNN, mobile robots, view-point invariant.

Copyright ⓒ ICROS. All rights reserved.
Institute of Control, Robotics and Systems, Suseo Hyundai-Ventureville 723, Bamgogae-ro 1-gil 10, Gangnam-gu, Seoul 06349, Korea
Homepage | Tel. +82-2-6949-5801 (ext. 3) | Fax. +82-2-6949-5807 | E-mail