* Join the Member of ICROS 
* Need your ID or Password?
Subject Keyword Abstract Author
Adaptive Fuzzy Finite-time Dynamic Surface Control for High-order Nonlinear System with Output Constraints

Kewen Li* and Yongming Li
International Journal of Control, Automation, and Systems, vol. 19, no. 1, pp.112-123, 2021

Abstract : This paper studies the problem of finite-time fuzzy adaptive dynamic surface control (DSC) design for a class of single-input and single-output (SISO) high-order nonlinear systems with output constraint. Fuzzy logic systems (FLSs) are utilized to identify the unknown smooth functions. By adopting Barrier Lyapunov function (BLF), the problem of output constrain is handled. Combining adding a power integrator and adaptive backstepping recursion design technique, a novel fuzzy adaptive finite-time DSC algorithm is proposed. Based on finite-time Lyapunov stable theory, the developed control algorithm means that all the signals of the closed-loop system are semi-global practical finite-time stable (SGPFS) and the tracking error converges to a small neighborhood of origin in finite time. In addition, the output does not violate the given constrain bound. Finally, both numerical and practical simulation examples are given to illustrate the effectiveness of the proposed control algorithm.

Keyword : Adaptive fuzzy DSC, adding a power integrator technique, finite-time control, high-order nonlinear systems, output constraint.

Copyright ⓒ ICROS. All rights reserved.
Institute of Control, Robotics and Systems, Suseo Hyundai-Ventureville 723, Bamgogae-ro 1-gil 10, Gangnam-gu, Seoul 06349, Korea
Homepage | Tel. +82-2-6949-5801 (ext. 3) | Fax. +82-2-6949-5807 | E-mail