* Join the Member of ICROS 
* Need your ID or Password?
Subject Keyword Abstract Author
Neural Approximation-based Model Predictive Tracking Control of Nonholonomic Wheel-legged Robots

Jiehao Li, Junzheng Wang, Shoukun Wang, Wen Qi, Longbin Zhang, Yingbai Hu, and Hang Su*
International Journal of Control, Automation, and Systems, vol. 19, no. 1, pp.372-381, 2021

Abstract : This paper proposes a neural approximation based model predictive control approach for tracking control of a nonholonomic wheel-legged robot in complex environments, which features mechanical model uncertainty and unknown disturbances. In order to guarantee the tracking performance of wheel-legged robots in an uncertain environment, effective approaches for reliable tracking control should be investigated with the consideration of the disturbances, including internal-robot friction and external physical interactions in the robot’s dynamical system. In this paper, a radial basis function neural network (RBFNN) approximation based model predictive controller (NMPC) is designed and employed to improve the tracking performance for nonholonomic wheel-legged robots. Some demonstrations using a BIT-NAZA robot are performed to illustrate the performance of the proposed hybrid control strategy. The results indicate that the proposed methodology can achieve promising tracking performance in terms of accuracy and stability.

Keyword : Model predictive control, neural approximation, nonholonomic system, tracking control, wheel-legged robot

Copyright ⓒ ICROS. All rights reserved.
Institute of Control, Robotics and Systems, Suseo Hyundai-Ventureville 723, Bamgogae-ro 1-gil 10, Gangnam-gu, Seoul 06349, Korea
Homepage | Tel. +82-2-6949-5801 (ext. 3) | Fax. +82-2-6949-5807 | E-mail