* Join the Member of ICROS 
* Need your ID or Password?
Subject Keyword Abstract Author
Adaptive State-space Control of Under-actuated Systems Using Error-magnitude Dependent Self-tuning of Cost Weighting-factors

Omer Saleem* and Khalid Mahmood-ul-Hasan
International Journal of Control, Automation, and Systems, vol. 19, no. 2, pp.931-941, 2021

Abstract : This article methodically constructs a novel adaptive self-tuning state-space controller that enhances the robustness of under-actuated systems against bounded exogenous disturbances. The generic Linear-Quadratic-Regulator (LQR) is employed as the baseline controller. The main contribution of this article is the formulation of a hierarchical online gain-adjustment mechanism that adaptively modulates the weighting-factors of LQR’s quadratic-performance-index by using pre-calibrated continuous hyperbolic scaling functions. The hyperbolic scaling functions are driven by the magnitude of system’s state-error variables. This augmentation dynamically updates the solution of the Matrix-Riccati-Equation which modifies the state-feedback gains after every sampling interval. The efficacy of the proposed adaptive controller is validated by conducting hardware-in-the-loop experiments on QNET Rotary Pendulum setup. The experimental outcomes show that the proposed adaptive control scheme yields stronger damping against oscillations and faster error-convergence rate, while maintaining the controller’s asymptotic-stability, under the influence of parametric uncertainties.

Keyword : Hyperbolic scaling function, linear quadratic regulator, performance-index, rotary pendulum, selftuning, weighting-factors.

Copyright ⓒ ICROS. All rights reserved.
Institute of Control, Robotics and Systems, Suseo Hyundai-Ventureville 723, Bamgogae-ro 1-gil 10, Gangnam-gu, Seoul 06349, Korea
Homepage | Tel. +82-2-6949-5801 (ext. 3) | Fax. +82-2-6949-5807 | E-mail