* Join the Member of ICROS 
* Need your ID or Password?
Subject Keyword Abstract Author
Variational Bayesian Adaptive Unscented Kalman Filter for RSSI-based Indoor Localization

Bo Yang, Xinchun Jia, and Fuwen Yang*
International Journal of Control, Automation, and Systems, vol. 19, no. 3, pp.1183-1193, 2021

Abstract : Most existing localization schemes necessitate a priori statistical characteristic of measurement noise, which may be unrealistic in practical applications. This paper investigates the variational Bayesian adaptive unscented Kalman filtering (VBAUKF) for received signal strength indication (RSSI) based indoor localization under inaccurate process and measurement noise covariance matrices. First, an inaccurate and slowly varying measurement noise covariance matrix can be estimated by choosing appropriate conjugate prior distribution for an indoor localization model with inaccurate process and measurement noise covariance matrices. By choosing inverse Wishart priors distribution, the state, predicted error and measurement noise covariance matrices are inferred on each time separately. Second, a parameter optimization algorithm is designed to minimize the localization error of VBAUKF until it less than the threshold set in advance. Finally, experimental validation is presented to demonstrate the accuracy and effectiveness of the proposed filtering method for indoor localizaion.

Keyword : Adaptive unscented Kalman filter, indoor localization, parameter optimization, variational Bayesian.

Copyright ⓒ ICROS. All rights reserved.
Institute of Control, Robotics and Systems, Suseo Hyundai-Ventureville 723, Bamgogae-ro 1-gil 10, Gangnam-gu, Seoul 06349, Korea
Homepage | Tel. +82-2-6949-5801 (ext. 3) | Fax. +82-2-6949-5807 | E-mail