* Join the Member of ICROS 
* Need your ID or Password?
Subject Keyword Abstract Author
Model Predictive Path Planning for an Autonomous Ground Vehicle in Rough Terrain

Jongho Shin*, Dongjun Kwak, and Kiho Kwak
International Journal of Control, Automation, and Systems, vol. 19, no. 6, pp.2224-2237, 2021

Abstract : An autonomous ground vehicle (AGV) in rough terrain typically experiences uncertain environment. Because the uncertainty makes overall performance of autonomous navigation degrade, the AGV requires a suitable path to maintain or improve the performance against the uncertainty. In order to handle this problem, this study proposes a model predictive path planning algorithm by employing a passivity-based model predictive control (MPC) optimization setup. The model predictive path planning method is formulated as a finite optimization problem with an objective function and several constraints. In the cost function, environment perception result about the AGV’s own neighborhood is included and the only traversable region has low cost value. To reflect dynamic characteristics of the AGV, the proposed method utilizes dynamic and kinematic models of the AGV as equality constraints and limited range of states and control input as inequality constraints. In addition, the stability of the path planning method is improved by a passivity constraint. The solution of the optimization problem is obtained using the particle swarm optimization (PSO) method. Finally, field tests are conducted to validate the performance of the proposed algorithm, and satisfactory results of the autonomous navigation were obtained.

Keyword : Autonomous ground vehicle, model predictive control, particle swarm optimization, passivity, path planning.

Copyright ⓒ ICROS. All rights reserved.
Institute of Control, Robotics and Systems, Suseo Hyundai-Ventureville 723, Bamgogae-ro 1-gil 10, Gangnam-gu, Seoul 06349, Korea
Homepage | Tel. +82-2-6949-5801 (ext. 3) | Fax. +82-2-6949-5807 | E-mail