* Join the Member of ICROS 
* Need your ID or Password?
Subject Keyword Abstract Author
Generalized-extended-state-observer-based Sliding-mode Control for Buck Converter Systems

Lan Zhou, Xiaojun Yi, Zhuang Jiang*, Jinhua She, and Zhu Zhang
International Journal of Control, Automation, and Systems, vol. 20, no. 12, pp.3923-3931, 2022

Abstract : This paper presents a generalized-extended-state-observer (GESO)-based sliding-mode control (SMC) method to deal with mismatched parameter uncertainty and reference-input mutation for a class of DC-DC buck converter systems (BCS). First, a GESO is designed to estimate the total disturbance together with the system state. Then, by choosing an appropriate disturbance-compensation gain, a composite SMC law is designed to attenuate the influence of the parameter uncertainty and reference input mutation on the system output. Both the stability criterion and deign procedure of the system are given. Finally, simulation results show that the designed GESO-based SMC system for the DC-DC BCS is robustly stable and achieves both satisfactory transient and steady-state performance. Comparisons demonstrate that the proposed method provides better transient and steady-state performance for both disturbance rejection and tracking control than either conventional SMC or ESO-based control approach does.

Keyword : DC-DC buck converter, generalized-extended-state-observer, sliding-mode control.

Copyright ⓒ ICROS. All rights reserved.
Institute of Control, Robotics and Systems, Suseo Hyundai-Ventureville 723, Bamgogae-ro 1-gil 10, Gangnam-gu, Seoul 06349, Korea
Homepage | Tel. +82-2-6949-5801 (ext. 3) | Fax. +82-2-6949-5807 | E-mail